- Consider the N-periodic sequence X with Fourier series coefficient sequence A.
- If X is real, then its Fourier series can be rewritten in trigonometric form as shown below.
- The trigonometric form of a Fourier series has the appearance

$$X(I) = \begin{pmatrix} N/2 - 1 \\ \alpha + 0 \end{pmatrix} \sum_{k=1}^{N/2 - 1} \alpha_k \cos \frac{2\pi kn}{N} + \beta_k \sin \frac{2\pi kn}{N} + N \text{ even}$$

$$X(I) = \begin{pmatrix} \alpha_{N/2} \cos \pi n \end{pmatrix} \qquad N \text{ even}$$

$$= \begin{pmatrix} 0 \\ \alpha + 0 \end{pmatrix} \sum_{k=1}^{N-1} \alpha_k \cos \frac{2\pi kn}{N} + \beta_k \sin \frac{2\pi kn}{N} \qquad N \text{ odd}$$

where $\alpha_0 = a_0$, $\alpha_{N/2} = a_{N/2}$, $\alpha_k = 2\text{Re}a_k$, and $\beta_k = -2\text{Im}a_k$. Note that the above trigonometric form contains only *real* quantities.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• Letting $a'_{k} = Na_{k}$, we can rewrite the Fourier series synthesis and analysis equations, respectively, as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} a'_{k} e^{i(2\pi i/N)kn}$$
 and $a'_{k} = \sum_{n=0}^{N-1} x(n) e^{-i(2\pi i/N)kn}$.

- Since x and a' are both N-periodic, each of the se sequences is completely characterized by its N samples over a single period.
- If we only consider the behavior of x and a' over a single period, this leads to the equations

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} a'_{k} e^{j(2\pi N)kn} \text{ for } n = 0, 1, \dots, N-1 \text{ and}$$
$$a'_{k} = \sum_{\substack{k=0 \ x(n) \neq e^{0}}}^{N-1} e^{-j(2\pi N)kn} \text{ for } k = 0, 1, \dots, N-.1$$

• As it turns out, the above two equations define what is known as the discrete Fourier transform (DFT.(

< ∃ →

• The discrete Fourier transform (DFT) X of the sequence X is defined as

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j(2\pi i N) kn} \text{ for } k = 0, 1, ..., N-.1$$

The preceding equation is known as the DFT analysis equation.
The inverse DFT X of the sequence X is given by

$$X(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i(2\pi N)kn}$$
 for $n = 0, 1, ..., N-.1$

- The preceding equation is known as the DFT synthesis equation.
- The DFT maps a finite-length sequence of N samples to another finite-length sequence of N samples.
- The DFT will be considered in more detail later.

•Since the analysis and synthesis equations for (DT) Fourier series involve only *finite*sums (as opposed to infinite series), convergence is not a significant issue of concern.

•If an *N*-periodic sequence is bounded (i.e., is finite in value), its Fourier series coefficient sequence will exist and be bounded and the Fourier series analysis and synthesis equations must converge.

玊

Section 9.2

Properties of Fourier Series

Version: 2016-01-25

군.

 $\mathcal{O}\mathcal{Q}$

Time Domain	Fourier Domain
$\alpha x(n) + \beta y(n($	$\alpha a_k + \beta b_k$
$x(n-n_0)$	$e^{-jk(2\pi N)n_0}a_k$
θ ^{i(2π/ M) k₀n x(n(}	a_{k-k_0}
x(-n(a_{-k}
x*(<i>n</i>)	a_{-k}^*
<i>a</i> n	$\frac{1}{N}x(-k($
<i>x</i> ⊛ y(<i>n</i> (Na _k b _k
x(n) y(n)	a⊛ b _k
Xeven	a even
Xodd	a odd
X(<i>I</i>) real	$a_k = a_{-k}^*$
-	ax(n) + β y(n(x(n-n) $\theta^{i(2\pi i N)k_0n}$ x(n(x(-n) x*(n) a_n x \otimes y(n(x(n) y(n) x even x odd x(n) real

Parseval's relation $\sum_{k=1}^{\infty} |n_{k}| N_{k}(n)|^{2} = \sum_{k=1}^{\infty} |A_{k}|^{2}$

• Let *X* and *Y* be *N*-periodic signals. If $X(n) \leftarrow \stackrel{\text{DTFS}}{\to} a_k$ and $y(n) \leftarrow \stackrel{\text{DTFS}}{\to} b_k$, then $\alpha X(n) + \beta y(n) \leftarrow \stackrel{\text{DTFS}}{\to} \alpha a_k + \beta b_k$

where α and β are complex constants.

• That is, a linear combination of signals produces the same linear combination of their Fourier series coefficients.

• For an *N*-periodic sequence *x* with Fourier-series coefficient sequence *a*, the following properties hold:

X is even $\Leftrightarrow a$ is even; and

X is odd $\Leftrightarrow a$ is odd.

In other words, the even/odd symmetry properties of X and A always match.

æ.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A signal X is real if and only if its Fourier series coefficient sequence a satisfies

$$a_k = a_{-k}^*$$
 for all k

)i.e., *a* has *conjugate symmetry*.(

• From properties of complex numbers, one can show that $a_k = a^*_{-k}$ is equivalent to

$$|a_k| = |a_{-k}|$$
 and $\arg a_k = -\arg a_{-k}$

)i.e., $|a_k|$ is *even* and arg a_k is *odd*.(

• Note that X being real does *not* necessarily imply that a is real.

玊

 $\mathcal{A} \subset \mathcal{A}$

< ∃ >

- For an N-periodic sequence X with Fourier-series coefficient sequence A, the following properties hold:
 - **a** is the average value of X over a single period:
 - 2) X is real and even $\Leftrightarrow a$ is real and even; and
 - 3) X is real and odd $\Leftrightarrow a$ is purely imaginary and odd.

æ

 $\mathcal{A} \subset \mathcal{A}$

∍►

Section 9.3

Fourier Series and Frequency Spectra

Version: 2016-01-25

< □ ▶

< 4 1 → <

군.

'문 ► ◀ 문 ►

 $\mathcal{O}\mathcal{A}\mathcal{O}$

- The Fourier series provides us with an entirely new way to view signals.
- Instead of viewing a signal as having information distributed with respect to *time*(i.e., a function whose domain is time), we view a signal as having information distributed with respect to *frequency* (i.e., a function whose domain is frequency.(
- This so called frequency-domain perspective is of fundamental importance in engineering.
- Many engineering problems can be solved *much more easily* using the frequency domain than the time domain.
- The Fourier series coefficients of a signal X provide a means to *quantify* how much information X has at different frequencies.
- The distribution of information in a signal over different frequencies is referred to as the *frequency spectrum* of the signal.

<ロト < 団ト < 団ト < 団ト = 三目

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• To gain further insight into the role played by the Fourier series coefficients a_k in the context of the frequency spectrum of the *N*-periodic signal x, it is helpful to write the Fourier series with the a_k expressed in *polar form* as

$$x(n) = \sum_{k=0}^{N-1} a_k e^{i\Omega_0 kn} = \sum_{k=0}^{N-1} |a_k| e^{i(\Omega_0 kn + \arg a_{k_k})}$$

where $\Omega_0 = \frac{2\pi}{N}$

- Clearly, the *k*th term in the summation corresponds to a complex sinusoid with fundamental frequency $k\Omega_0$ that has been *amplitude scaled* by a factor of $|a_k|$ and *time-shifted* by an amount that depends on $\arg a_k$.
- For a given k, the *larger* $|a_k|$ is, the larger is the amplitude of its corresponding complex sinusoid $e^{ik\Omega_0 n}$, and therefore the *larger the contribution* the *k*th term (which is associated with frequency $k\Omega_0$) will make to the overall summation.
- In this way, we can use $|a_k|$ as a *measure* of how much information a signal *X* has at the frequency $k\Omega_{.0}$

- The Fourier series coefficients a_k of the sequence x are referred to as the frequency spectrum of x.
- The magnitudes $|a_k|$ of the Fourier series coefficients a_k are referred to as the magnitude spectrum of X.
- The arguments $\arg a_k$ of the Fourier series coefficients a_k are referred to as the phase spectrum of X.
- The frequency spectrum a_k of an N-periodic signal is N-periodic in the coefficient index k and 2TT-periodic in the frequency $\Omega = k\Omega_{.0}$
- The range of frequencies between $-\pi$ and π are referred to as the baseband.
- Often, the spectrum of a signal is plotted against frequency $\Omega = k\Omega_0$ (over the single 2π period of the baseband) instead of the Fourier series coefficient index k.

<ロト < 団 > < 団 > < 豆 > < 豆 > < 亘

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- Since the Fourier series only has frequency components at integer multiples of the fundamental frequency, the frequency spectrum is *discrete* in the independent variable (i.e., frequency.(
- Due to the general appearance of frequency-spectrum plot (i.e., a number of vertical lines at various frequencies), we refer to such spectra as line spectra.

玊

 $\mathcal{A} \subset \mathcal{A}$

< ∃ ▶